首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的自适应蚁群算法求解TSP问题
引用本文:占志刚,张求明,张盛意,王康. 一种改进的自适应蚁群算法求解TSP问题[J]. 计算机与数字工程, 2010, 38(2): 11-14
作者姓名:占志刚  张求明  张盛意  王康
作者单位:中国地质大学(武汉)计算机学院,武汉,430074
摘    要:文章提出了一种改进的蚁群算法,其核心是限制单步路径上的蚂蚁数目,当该路径上的信息素达到一定浓度时,人为的迫使蚂蚁改换路径,从而更好的全局寻优,避免算法陷入局部极优,并使用2-Opt方法对路径进行优化。对旅行商问题(TSP)的实验结果表明:新算法的优化结果和效率都优于基本蚁群算法。

关 键 词:蚁群算法  信息素  2-Opt  旅行商问题

An Improved Adaptive Ant Colony Algorithm for Solving TSP
Zhan Zhigang Zhang Qiuming Zhang Shengyi Wang Kang. An Improved Adaptive Ant Colony Algorithm for Solving TSP[J]. Computer and Digital Engineering, 2010, 38(2): 11-14
Authors:Zhan Zhigang Zhang Qiuming Zhang Shengyi Wang Kang
Affiliation:School of Computer/a>;China University of Geosciences/a>;Wuhan 430074
Abstract:An improved ant colony algorithm is proposed,whose core is to limit the number of ants on the single-step path,when the pheromone on the path reaches a certain concentration,we force to change paths of ants,so the new algorithm have good capability in global search,avoid falling in local best,and the routes are optimized by 2-Opt method when all ants have found effective route.The tests for TSP problem show that the new algorithm is superior to conventional ACA in quality and efficiency.
Keywords:ant colony algorithm  pheromone  2-Opt method  TSP  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号