Abstract: | Actin filaments have been examined by electron microscopy whilst in a frozen-hydrated state. Filaments embedded in a vitreous water layer are basically similar to those prepared by negative staining and show characteristic helical substructure, where the pitches of the helices are about 70 nm and 6 nm. Variability in spacing between long pitch helix cross-over points has been observed, which is consistent with intrinsic angular disorder between successive filament subunits. Fourier transforms of the most ordered filaments show four strong layer lines that index as the first, fifth, sixth and seventh orders of a 35 nm repeat. A three-dimensional helical reconstruction, calculated to a resolution of about 4 nm, shows the individual subunits to be orientated with their long axes roughly perpendicular to the filament axis. Each subunit is somewhat curved and is resolved into two domains. Most connections between successive subunits appear to be made close to the filament axis. We also report on the performance of the specimen holder (Philips PW 5699) used in this work. |