首页 | 本学科首页   官方微博 | 高级检索  
     


Silicon single electron transistors with SOI and MOSFET structures: the role of access resistances
Authors:Jehl   X. Sanquer   M. Bertrand   G. Guegan   G. Deleonibus   S. Fraboulet   D.
Affiliation:Departement de Recherche Fondamentale sur la Matiere Condensee, CEA-Grenoble, Grenoble, France;
Abstract:Coulomb blockade has been widely reported in silicon and metallic structures without intentional tunnel barriers. In particular, a simple constriction in silicon-on-insulator (SOI) allows to build a three-terminal silicon single-electron transistor (SET) operating at moderate temperature. The key parameters are the access resistances confining the electrons and the size of the gate-channel overlap, which sets the Coulomb energy. Thin films of doped silicon with sheet resistance of a few tens of h/e/sup 2/ are well suited for fabricating optimized access resistances. Low doped extensions with typical resistivity 1000 /spl Omega//spl mu/m (at 300 K) are also good candidates. We illustrate this MOS-SET principle in SOI constriction and standard MOSFET of similar size. Although relying on different concepts, the ultimate MOSFET and MOS-SET are shown to be technologically close, differing mostly by the ratio between the channel resistance over the access resistance. Because this ratio is decreasing as the gate length shrinks, single electron effects should become more and more important at high temperature in the subthreshold regime of standard field effect transistor devices.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号