首页 | 本学科首页   官方微博 | 高级检索  
     


Exploiting CMOS reverse interconnect scaling in multigigahertzamplifier and oscillator design
Authors:Kleveland  B Diaz  CH Vook  D Madden  L Lee  TH Wong  SS
Affiliation:Stanford Univ., CA;
Abstract:The increasing number of interconnect layers that are needed in a CMOS process to meet the routing and power requirements of large digital circuits also yield significant advantages for analog applications. The reverse thickness scaling of the top metal layer can be exploited in the design of low-loss transmission lines. Coplanar transmission lines in the top metal layers take advantage of a low metal resistance and a large separation from the heavily doped silicon substrate. They are therefore fully compatible with current and future CMOS process technologies. To investigate the feasibility of extending CMOS designs beyond 10 GHz, a wide range of coplanar transmission lines are characterized. The effect of the substrate resistivity on coplanar wave propagation is explained. After achieving a record loss of 0.3 dB/mm at 50 GHz, coplanar lines are used in the design of distributed amplifiers and oscillators. They are the first to achieve higher than 10 GHz operating frequencies in a conventional CMOS technology
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号