首页 | 本学科首页   官方微博 | 高级检索  
     


Cu-Sn binary metal particle generation by spray pyrolysis
Authors:Yujia Liang  Ryan Felix  Howard Glicksman
Affiliation:1. Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA;2. DuPont Electronic Technologies, Research Triangle Park, North Carolina, USA
Abstract:Cu-Sn binary particles were generated via spray pyrolysis from metal salt precursors with ethylene glycol as the co-solvent and reducing agent. The morphology, crystallinity, and elemental distribution of particles were tunable by changing the reaction temperature, residence time, and quench gas flow rate. Hollow porous particles were fabricated with a higher Sn concentration on the particle surface when the furnace set point was 500°C, while solid particles with a lower surface Sn concentration were generated when the furnace set point was 1000°C. Particles with spherical morphologies were obtained at long residence time conditions (4.5 s). Cu-Sn binary particles with irregular structures (e.g., pores on the particle surface, fragmented spherical particles, and lamellar fragments) were formed at short residence time conditions (0.92 s). A possible spray pyrolysis mechanism was proposed that incorporates chemical reaction steps and structural progression. By this mechanism, the metal salts are believed to sequentially undergo hydrolysis to metal hydroxides, decomposition to metal oxides, reduction to metals, and finally diffusion of Sn into the Cu matrix to generate the Cu-Sn solid solution.

Copyright © 2017 American Association for Aerosol Research

Keywords:Mark Swihart
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号