首页 | 本学科首页   官方微博 | 高级检索  
     


Magnetic cobalt-zinc ferrite/PVAc nanocomposite: synthesis and characterization
Authors:F S Mohammad Doulabi  M Mohsen-Nia
Affiliation:1. Department of Chemistry, University of Kashan, Kashan, Iran
2. Department of Chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran
3. Division of Chemistry and Chemical Engineering, Caltech, Pasadena, CA, USA
Abstract:Metal oxide nanoparticles are the subject of current interest because of their unusual optical, electronic, and magnetic properties. In this work, cobalt zinc ferrite ( $ {\text{Co}}_{0.3} {\text{Zn}}_{0.7} {\text{Fe}}_{2} {\text{O}}_{4} $ ) nanoparticles have been synthesized successfully through redox chemical reaction in aqueous solution. The synthesized $ {\text{Co}}_{0.3} {\text{Zn}}_{0.7} {\text{Fe}}_{2} {\text{O}}_{4} $ nanoparticles have been used for the preparation of homogenous polyvinyl acetate-based nanocomposite ( $ {\text{Co}}_{0.3} {\text{Zn}}_{0.7} {\text{Fe}}_{2} {\text{O}}_{4} /{\text{PVAc}} $ ) via in situ emulsion polymerization method. Structural, morphological and magnetic properties of the products were determined and characterized in detail by X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The XRD patterns of the $ {\text{Co}}_{0.3} {\text{Zn}}_{0.7} {\text{Fe}}_{2} {\text{O}}_{4} $ confirmed that the formed nanoparticles are single crystalline. According to TEM micrographs, the synthesized $ {\text{Co}}_{0.3} {\text{Zn}}_{0.7} {\text{Fe}}_{2} {\text{O}}_{4} $ nanoparticles had nano-needle morphology with an average particle size of 20 nm. The calculated coefficient of variation (CV) of nanoparticles diameters obtained by TEM micrographs was 16.77. The $ {\text{Co}}_{0.3} {\text{Zn}}_{0.7} {\text{Fe}}_{2} {\text{O}}_{4} $ nanoparticles were dispersed almost uniformly in the polymer matrix as was proved by SEM technique. The magnetic parameters of the samples, such as saturation magnetization (M s) and coercivity (H c) were measured, as well. Magnetization measurements indicated that the saturation magnetization of synthesized $ {\text{Co}}_{0.3} {\text{Zn}}_{0.7} {\text{Fe}}_{2} {\text{O}}_{4} /{\text{PVAc}} $ nanocomposites was markedly less than that of $ {\text{Co}}_{0.3} {\text{Zn}}_{0.7} {\text{Fe}}_{2} {\text{O}}_{4} $ magnetic nanoparticles. However, the nanocompoites exhibited super-paramagnetic behavior at room temperature under an applied magnetic field.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号