首页 | 本学科首页   官方微博 | 高级检索  
     


Thorough removal of inorganic and organic mercury from aqueous solutions by adsorption on Lemna minor powder
Authors:Shun-Xing Li  Zheng Feng-Ying  Huang Yang  Ni Jian-Cong
Affiliation:1. Department of Chemistry, Zhangzhou Normal University, Zhangzhou 363000, China;2. Fujian Province University Key Laboratory of Analytical Science, Zhangzhou Normal University, Zhangzhou, China
Abstract:The adsorption ability of duckweed (Lemna minor) powders for removing inorganic and organic mercury (methyl and ethyl mercury) has been studied using cold vapour atomic absorption spectrometry. The optimal adsorption conditions were: (a) the pH value of the solution 7.0 for inorganic and ethyl mercury, 9.0 for methyl mercury, and (b) equilibrium adsorption time 10, 20, and 40 min for inorganic mercury, methyl mercury, and ethyl mercury, respectively. After adsorption by L. minor powder for 40 min, when the initial concentrations of inorganic and organic mercury were under 12.0 μg L−1 and 50.0 μg L−1, respectively, the residual concentrations of mercury could meet the criterion of drinking water (1.0 μg L−1) and the permitted discharge limit of wastewater (10.0 μg L−1) set by China and USEPA, respectively. Thorough removal of both inorganic and organic mercury from aqueous solutions was reported for the first time. The significant adsorption sites were C–O–P and phosphate groups by the surface electrostatic interactions with aqueous inorganic and organic mercury cations, and then the selective adsorption was resulted from the strong chelating interaction between amine groups and mercury on the surface of L. minor cells.
Keywords:Mercury remove   Lemna minor   Adsorption   Low residual concentration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号