基于RVM的网络流量分类研究 |
| |
引用本文: | 柏骏,夏靖波,鹿传国,李明辉,任高明. 基于RVM的网络流量分类研究[J]. 电子科技大学学报(自然科学版), 2014, 43(2): 241-246. DOI: 10.3969/j.issn.1001-0548.2014.02.016 |
| |
作者姓名: | 柏骏 夏靖波 鹿传国 李明辉 任高明 |
| |
作者单位: | 1.空军工程大学信息与导航学院 西安 710077; |
| |
基金项目: | 陕西省科技计划自然基金重点项目(2012JZ8005); 全军军事学研究生课题(2010XXXX-488) |
| |
摘 要: | 将相关向量机(RVM)分类模型应用于网络流量分类问题中. 首先对实验数据进行了标准化处理, 然后将RVM与其他机器学习算法进行了性能比较, 最后在RVM分类结果预测概率中引入置疑区间概念, 研究了置疑区间范围及其对分类准确性的影响, 并基于此提出了一种新的混合流量分类方法. 实验结果表明: 1) RVM在准确性等3方面性能指标上优于SVM, 且在小样本情况下仍具有较高的分类准确率; 2) 置疑区间[0.1,0.9]内的分类预测准确率较低, 而置疑区间之外的分类预测准确率在98%以上.
|
关 键 词: | 置疑区间 机器学习 相关向量机 流量分类 |
收稿时间: | 2012-11-28 |
Network Traffic Classification Based on Relevant Vector Machine |
| |
Affiliation: | 1.Information and Navigation College,Air Force Engineering University Xi'an 710077;2.Logistics Department of Air Force Dongcheng Beijing 100720 |
| |
Abstract: | Relevant vector machine (RVM) is applied in network traffic classification. Firstly, experiment data is standardized, and then RVM is compared with other machine learning tools. Lastly, doubting interval is introduced to analyze predicted probability of classification, based on which a new hybrid traffic classification approach is proposed. Experiment studies illustrate that: 1) RVM excels the support vector machine (SVM) in three performances, and moreover, its classification accuracy is rather high in the situation of small sample circumstances; 2) probabilistic classification in doubting interval has a rather low classification accuracy while an accuracy above 98% outside doubting interval. |
| |
Keywords: | |
|
| 点击此处可从《电子科技大学学报(自然科学版)》浏览原始摘要信息 |
|
点击此处可从《电子科技大学学报(自然科学版)》下载全文 |
|