首页 | 本学科首页   官方微博 | 高级检索  
     


Stabilizing transport dynamics of control channels over wide-area networks
Authors:Qishi Wu  Nageswara SV Rao  Xukang Lu  Ki-Hyeon Kwon
Affiliation:1. Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China;2. Institute for Solid State Physics, Karlsruhe Institute of Technology, PO Box 3640, Karlsruhe 76021, Germany
Abstract:The next generation large-scale computing applications require network support for interactive visualization, computational steering and instrument control over wide-area networks. In particular, these applications require stable transport streams over wide-area networks, which are not adequately supported by current transport methods. We propose a new class of protocols capable of stabilizing a transport channel at a specified throughput level in the presence of random network dynamics based on the classical Robbins–Monro stochastic approximation approach. These protocols dynamically adjust the window size or sleep time at the source to achieve stable throughput at the destination. The target throughput typically corresponds to a small fraction of the available connection bandwidth. This approach yields provably probabilistically stable protocols as a consequence of carefully adjusted step sizes. The superior and robust stabilization performance of the proposed approach is extensively evaluated in a simulated environment and further verified through real-life implementations and deployments over both Internet and dedicated connections under disparate network conditions in comparison with existing transport methods.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号