首页 | 本学科首页   官方微博 | 高级检索  
     


Submicrometric lipobead-based fluorescence sensors for chloride ion measurements in aqueous solution
Authors:Ma Aihui  Rosenzweig Zeev
Affiliation:Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA.
Abstract:This paper describes the preparation and optimization of the analytical properties of fluorescence-based submicrometric chloride ion sensing lipobeads. Fluorescence sensing lipobeads are polystyrene nanoparticles that are coated with a phospholipid membrane that contains a fluorescent indicator for a targeted analyte. In this study, the halide-specific fluorescence dye, lucigenin, was immobilized into the phospholipid membrane of the lipobeads to enable chloride ion detection. The fluorescence intensity of lucigenin decreases with increasing chloride ion concentration due to dynamic quenching. Lipobeads that contained only lucigenin were ineffective as chloride ion sensors due to poor partition of the water-soluble lucigenin molecules into the phospholipid membrane and high leakage rate of immobilized lucigenin molecules to the aqueous solution. To stabilize the chloride ion sensing lipobeads we coimmobilized hexadecanesulfonate molecules into the phospholipid membrane. The formation of ion pairs between hexadecanesulfonate and lucigenin decreased the hydrophilicity of the dye, increased its partition rate into the membrane, increased the brightness of the particles, and significantly decreased the leakage rate of the hydrophobic ion pair from the membrane to the solution. To further improve their chloride ion sensitivity, we also immobilized the chloride ionophore 9] mercuracarborand-3 into the lipobead membrane. The study resulted in a unique submicrometric chloride ion sensor, which is suitable for chloride ion measurements in biological fluids.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号