首页 | 本学科首页   官方微博 | 高级检索  
     


Novel synthesis of microcrystalline titanium(IV) oxide having high thermal stability and ultra-high photocatalytic activity: thermal decomposition of titanium(IV) alkoxide in organic solvents
Authors:H Kominami  J Kato  Y Takada  Y Doushi  B Ohtani  S Nishimoto  M Inoue  T Inui  Y Kera
Abstract:Thermal decomposition of titanium(IV) tetra-tert-butoxide (TTB) in inert organic solvents at 573 K yielded microcrystalline anatase (titanium(IV) oxide, TiO2) powders with a crystallite size of ca. 9 nm and a surface area of <100 m2 g-1. Primary and secondary alkoxides of titanium(IV), however, were not decomposed under similar conditions, indicating that the thermal stability of C-O bonds in the alkoxides was a decisive factor for their decomposition. The TiO2 prepared from TTB by this manner was thermally stable upon calcination in air and retained high surface area of ca. 100 m2 g-1 even after calcination at 823 K. The as-prepared TiO2 powders, without calcination, exhibited much higher rate of carbon dioxide formation than any other active photocatalysts such as Degussa P-25 and Ishihara ST-01 in the photocatalytic mineralization of acetic acid in aerated aqueous solutions. The higher activity of the present TiO2 photocatalysts is attributed to both high crystallinity and large surface of the present product. The calcination of the as-prepared TiO2 in air reduced the photocatalytic activity, but it was still higher than the other commercially available TiO2's. This revised version was published online in July 2006 with corrections to the Cover Date.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号