首页 | 本学科首页   官方微博 | 高级检索  
     

基于高斯核显性映射的核归一化解相关仿射投影P范数算法
引用本文:赵知劲, 陈思佳. 基于高斯核显性映射的核归一化解相关仿射投影P范数算法[J]. 电子与信息学报, 2020, 42(8): 1896-1901. doi: 10.11999/JEIT190602
作者姓名:赵知劲  陈思佳
作者单位:1.杭州电子科技大学通信工程学院 杭州 310018;;2.中国电子科技集团第36研究所通信系统信息控制技术国家级重点实验室 嘉兴 314001
摘    要:

为了降低核仿射投影P范数(KAPP)算法的计算量和存储容量,提高在输入信号强相关时KAPP算法的收敛速度和稳态性能,该文提出基于高斯核显性映射的核归一化解相关APP(KNDAPP-GKEM)算法。该算法利用归一化解相关方法预先解除输入信号的相关性;利用高斯核显式映射方法近似得到显式核函数,消除了对历史数据的依赖,解决了KAPP算法因结构不断生长导致的计算量和存储容量过大的问题。α稳定分布噪声背景下的非线性系统辨识仿真结果表明,在输入信号强相关时KNDAPP-GKEM算法收敛速度快,非线性系统辨识稳态均方误差小,训练所需时间呈线性缓慢增长,有利于实际非线性系统辨识的应用。



关 键 词:信号处理   核仿射投影P范数   相关性   高斯核显性映射   α稳定分布   非线性系统辨识
收稿时间:2019-08-08
修稿时间:2020-04-30

A Kernel Normalization Decorrelated Affine Projection P-norm Algorithm Based on Gaussian Kernel Explicit Mapping
Zhijin ZHAO, Sijia CHEN. A Kernel Normalization Decorrelated Affine Projection P-norm Algorithm Based on Gaussian Kernel Explicit Mapping[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1896-1901. doi: 10.11999/JEIT190602
Authors:Zhijin ZHAO  Sijia CHEN
Affiliation:1. School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;;2. State Key Laboratory of Information Control Technology in Communication System, The 36th Research Institute of China Electronics Technology Group Corporation, Jiaxing 314001, China
Abstract:In order to reduce the computation complexity and storage capacity of the Kernel Affine Projection P-norm (KAPP) algorithm, and improve the convergence rate and steady-state performance of the algorithm when the input signal is strongly correlated, a Kernel Normalization Decorrelated Affine Projection P-norm algorithm based on Gaussian Kernel Explicit Mapping (KNDAPP-GKEM) is proposed. The correlation of the input signal is eliminated in advance by the normalized correlation method. The explicit kernel function is approximated by Gaussian kernel explicit mapping method, which eliminates the dependence on historical data and solves the problem that the computation and storage capacity of the KAPP algorithm are too high due to the continuous growth of structure. The simulation results of nonlinear system identification under α-stable distribution noise environment show that when the training data scale is large, the KNDAPP-GKEM algorithm still maintains a fast convergence rate and the low identification mean square error of nonlinear system. Moreover, its training time is linearly and slowly increased, which is more conducive to the practical application of nonlinear system identification.
Keywords:Signal processing  Kernel Affine Projection P-norm(KAPP)  Correlation  Gaussian Kernel Explicit Mapping(GKEM)  α-stable distribution  Nonlinear system identification
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号