Preparation of polyacrylate/paraffin microcapsules and its application in prolonged release of fragrance |
| |
Authors: | Yu Zhang Jia Song Hongling Chen |
| |
Affiliation: | State Key Laboratory of Materials‐Oriented Chemical Engineering, Department of Chemical Engineering, Nanjing Tech University, Nanjing, China |
| |
Abstract: | The purpose of the present work was to develop a fragrance encapsulation system using polyacrylate/paraffin microcapsules. The Polyacrylate/paraffin microcapsules were fabricated by the method of suspension polymerization in Pickering emulsion. Morphology, size distribution, and thermal resistance of polyacrylate/paraffin microcapsules were investigated by scanning electron microscopy, light scattering particle size analyzer, and thermogravimetric analyzer. Results indicated that the crosslinked PMMA/paraffin microcapsules and P(MMA‐co‐BMA)/paraffin microcapsules prepared under optimal conditions presented regular spherical shape and similar size distribution. The crosslinked P(MMA‐co‐BMA)/paraffin microcapsules exhibited better thermal stability, with a thermal resistance temperature up to 184 °C. Fragrance microcapsules were prepared by encapsulating fragrance into crosslinked P(MMA‐co‐BMA)/paraffin microcapsules. The prolonged release performance of fragrance microcapsules was measured by ultraviolet‐visible near‐infrared spectrophotometer. 63.9% fragrance was retained after exposing fragrance microcapsules in air for 3 months, and the fragrance continued to release over 96 h in surfactant solution (sodium lauryl sulfonate, 20 wt %). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44136. |
| |
Keywords: | applications copolymers crosslinking properties and characterization synthesis and processing |
|
|