首页 | 本学科首页   官方微博 | 高级检索  
     


Control of an unstable reaction–diffusion PDE with long input delay
Authors:Miroslav Krstic  
Affiliation:aDepartment of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093-0411, USA
Abstract:A Smith Predictor-like design for compensation of arbitrarily long input delays is available for general, controllable, possibly unstable LTI finite-dimensional systems. Such a design has not been proposed previously for problems where the plant is a PDE. We present a design and stability analysis for a prototype problem, where the plant is a reaction–diffusion (parabolic) PDE, with boundary control. The plant has an arbitrary number of unstable eigenvalues and arbitrarily long delay, with an unbounded input operator. The predictor-based feedback design extends fairly routinely, within the framework of infinite-dimensional backstepping. However, the stability analysis contains interesting features that do not arise in predictor problems when the plant is an ODE. The unbounded character of the input operator requires that the stability be characterized in terms of the H1 (rather than the usual L2) norm of the actuator state. The analysis involves an interesting structure of interconnected PDEs, of parabolic and first-order hyperbolic types, where the feedback gain kernel for the undelayed problem becomes an initial condition in a PDE arising in the compensator design for the problem with input delay. Space and time variables swap their roles in an interesting manner throughout the analysis.
Keywords:Delays   Distributed parameter systems   Backstepping   Predictor feedback
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号