首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of prior creep at 1365 K on the room temperature tensile properties of several oxide dispersion strengthened alloys
Authors:J Daniel Whittenberger
Affiliation:(1) NASA-Lewis Research Center, 44135 Cleveland, OH
Abstract:A study was undertaken to determine if oxide dispersion strengthened (ODS) Ni-base alloys in wrought bar form are subject to a loss of room temperature tensile properties after elevated temperature creep similar to that found in a thin gage ODS alloy sheet. The bar products evaluated included ODS-Ni, ODS-NiCr, and advanced ODS-NiCrAl types. Tensile type test specimens were creep exposed in air at various stress levels at 1365 K and then tensile tested at room temperature. Low residual tensile properties, change in fracture mode, the appearance of dispersoid free bands, grain boundary cavitation, and/or internal oxidation in the microstructure were interpreted as creep degradation effects. This work has shown that many ODS alloys are subject to creep damage. Degradation of tensile properties occurs after very small amounts (≲0.2 pct) of creep strain; ductility being the most sensitive property. The amount of degradation is dependent on the creep strain and is essentially independent of the alloy system. All the ODS alloys which were creep damaged possessed a large grain size (>100 μm). Creep damage appears to be due to diffusional creep which produces dispersoid free bands around boundaries acting as vacancy sources. Low angle and, possibly, twin boundaries were found to act as vacancy sources. The residual tensile properties of two alloys were not affected by prior creep parallel to the extrusion axis. One of these alloys, DS-NiCr(S), was single crystalline. The other alloy, TD-Ni, possessed a small, elongated grain structure which minimized the thickness of the dispersoid free bands produced by diffusional creep.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号