首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and properties of lignin-highly branched poly (ester-amine) polymeric systems
Authors:Gopakumar SivasankarapillaiArmando G McDonald
Affiliation:Forest Products, University of Idaho, Moscow, ID 83844-1132, USA
Abstract:Combined characteristics of hydrogen bonded/cross-linked polymer networks based on lignin motifs have been developed. This new type of polymeric material was prepared from an industrial lignin and a highly branched poly(ester-amine) (HBPEA) obtained by melt polycondensation of 1,1,1-triethanolamine (TEA) and adipic acid (AA). The lignin-HBPEA polymers were shown to be insoluble in common organic solvents and were characterized by FTIR and NMR spectroscopies. Thermo-mechanical measurements showed that melt mixing HBPEA with 40% lignin results in a flexible and tough material (Tg; 7.7 °C and E′ 3.5 GPa). The hydrogen bonding recognition was based on various hydroxyl groups in lignin and aliphatic ester groups from HBPEA. The extent of interactions could be controlled by varying the amount of lignin added. These networks were thermally reversible and have highly tunable mechanical properties that were controlled by the extent of interactions. High level of mechanical properties could be achieved through the addition of lignin-poly(ester-amine) covalent cross-links. This study shows that the poly(ester-amine) structure plays an important role in the thermo-mechanical properties. By varying the spacer length between lignin and tertiary amine unit, materials with various thermo-mechanical properties were also obtained from the same parent polymer backbone.
Keywords:Lignin  Poly(ester-amine)  Copolymerization  Viscoelastic properties  Esterification
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号