首页 | 本学科首页   官方微博 | 高级检索  
     


Slip and micro flow characteristics near a wall of evaporating thin films in a micro channel
Authors:Jun‐Jie Zhao  Xiao‐Feng Peng  Yuan‐Yuan Duan
Affiliation:Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University, China
Abstract:The microscopic liquid flow and heat transfer characteristics near the solid–liquid interface in the evaporating thin film region of a mini channel were investigated based on the augmented Young–Laplace equation and kinetic theory. A physical model using the boundary layer approximation and a constant slip length was developed to obtain the solid–liquid interfacial thermal resistances and interfacial temperatures. The results show that the ordered micro layer and micro flow near the wall reduce the effective liquid superheat and the liquid pressure difference mainly due to the reduced capillary pressure gradient. The solid–liquid interfacial thermal resistances and U‐shaped temperature drops tend to reduce the thin film spreading and heat transfer. The effects of the solid–liquid interfacial thermal resistances on the thin film evaporation outweigh the effects of the thermal conductivity enhancement due to the liquid ordering. The concepts of the micro flow and ordered adsorbed flowing micro layer are clarified to express the Kapitza resistance analytically in terms of the slip length and micro layer thickness. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; 39(7): 460–474, 2010; Published online 3 June 2010 in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20310
Keywords:evaporating thin film  solid–  liquid interface  liquid slip  near‐wall micro flow  interfacial thermal resistance  interfacial temperature jump
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号