首页 | 本学科首页   官方微博 | 高级检索  
     

基于云计算的SLIQ并行算法研究
引用本文:杨长春,沈晓玲. 基于云计算的SLIQ并行算法研究[J]. 计算机工程与科学, 2012, 34(3): 62-66
作者姓名:杨长春  沈晓玲
作者单位:常州大学信息科学与工程学院,江苏常州,213164
基金项目:国家自然科学基金资助项目(61003163);江苏省科技基金资助项目(BZ2010021)
摘    要:云计算为存储和分析海量数据提供了高效的解决方案,对数据挖掘算法的研究具有重要的理论意义和应用价值。SLIQ算法采用逐一遍历并计算伸缩性指标的方法来寻找最佳分裂点,这种方法过于消耗时间,当数据量增大时,算法的执行效率很低。本文针对云计算环境下的决策规则挖掘算法展开研究,介绍了Map Reduce编程模型,在此基础上,以实现云计算环境下SLIQ并行化挖掘为目的,给出了改进后的SLIQ算法在Map Reduce编程模型上的应用过程。

关 键 词:云计算  SLIQ  MapReduce  数据挖掘

Research on the SLIQ Parallel Algorithm Based on Cloud Computing
YANG Chang-chun , SHEN Xiao-ling. Research on the SLIQ Parallel Algorithm Based on Cloud Computing[J]. Computer Engineering & Science, 2012, 34(3): 62-66
Authors:YANG Chang-chun    SHEN Xiao-ling
Affiliation:(School of Information Science and Engineering,Changzhou University,Changzhou 213164,China)
Abstract:Cloud computing provides efficient solutions to storing and analyzing mass data.It is very important to study the data mining algorithms based on cloud computing from the theoretical viewpoint and the practical viewpoint.The SLIQ algorithm finds the best split point through calculating the scalability indexes one by one.When the amount of data increases,the method is time-consuming,and the efficiency of the algorithm is very low.In this paper,the algorithms of mining decision rules based on the cloud computing environment are focused on the MapReduce programming model.On the basis,an improved SLIQ algorithm as well as the procedure of the improved SLIQ algorithm on MapReduce is designed in order to realize parallel data mining.
Keywords:cloud computing  SLIQ  MapReduce  data mining
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号