首页 | 本学科首页   官方微博 | 高级检索  
     

基于CUDA编程模型的稀疏对角矩阵向量乘优化
引用本文:秦晋,龚春叶,胡庆丰,刘杰. 基于CUDA编程模型的稀疏对角矩阵向量乘优化[J]. 计算机工程与科学, 2012, 34(7): 78-83
作者姓名:秦晋  龚春叶  胡庆丰  刘杰
作者单位:国防科学技术大学计算机学院,湖南长沙,410073
基金项目:国家自然科学基金资助项目,国家863计划资助项目
摘    要:稀疏矩阵向量乘是很多科学计算问题中的核心问题。本文针对稀疏对角矩阵,在DIA存储格式的基础上,设计了一种新型压缩存储格式CDIA,结合CUDA编程模型的特点,在计算线程上进行了细粒度的任务分配,同时为满足CUDA对存储器的合并访问要求,将压缩矩阵做了相应的转置处理,设计了细粒度算法与程序,并根据稀疏矩阵向量乘特点,做了相应的程序优化。实验数据显示,这种存储格式能够很好地发挥CUDA在数据处理方面的优势,在测试数据中,最高获得了单精度39.6Gflop/s和双精度19.6Gflop/s的浮点计算性能,性能在Nathan Bell和Michael Garland的基础上分别提高了7.6%和17.4%。

关 键 词:GPU  CDIA  CUDA  稀疏矩阵向量乘

Optimization of Sparse Diagonal Matrix-Vector Multiplication Based on the CUDA Program Model
QIN Jin , GONG Chun-ye , HU Qing-feng , LIU Jie. Optimization of Sparse Diagonal Matrix-Vector Multiplication Based on the CUDA Program Model[J]. Computer Engineering & Science, 2012, 34(7): 78-83
Authors:QIN Jin    GONG Chun-ye    HU Qing-feng    LIU Jie
Affiliation:(School of Computer Science,National University of Defense Technology,Changsha 410073,China)
Abstract:Sparse matrix-vector multiplication is often an important computational kernel in many scientific applications.This paper faces the n-diagonal sparse matrix,uses the CUDA program model and describes a new compress format of sparse matrix based on the DIA compress format(CDIA),and gives each thread fine-grained task distribution.In order to fulfill the characteristics of the align access of memory in CUDA,we transpose the compress matrix and design a fine-grained algorithm and program and do some optimization to the program.In the data experiment,our best implementation achieves up to 39.6Gflop/s in single-precision and 19.6Gflop/s in double-precision,and enhances the performance by about 7.6% and 17.4% that of Nathan Bell’s and Michael Garland’s respectively.
Keywords:GPU  CDIA  CUDA  sparse matrix-vector multiplication
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号