首页 | 本学科首页   官方微博 | 高级检索  
     

基于混淆矩阵和集成学习的分类方法研究
引用本文:孔英会,景美丽. 基于混淆矩阵和集成学习的分类方法研究[J]. 计算机工程与科学, 2012, 34(6): 111-117
作者姓名:孔英会  景美丽
作者单位:华北电力大学电子与通信工程系,河北保定,071003
摘    要:针对多分类问题,本文提出一种基于混淆矩阵和集成学习的分类方法。从模式间的相似性关系入手,基于混淆矩阵产生层次化分类器结构;以支持向量机(SVM)作为基本的两类分类器,对于分类精度不理想的SVM,通过AdaBoost算法对SVM分类器进行加权投票。以变电站环境监控中的目标识别为例(涉及到人、动物、普通火焰(红黄颜色火焰)、白色火焰、白炽灯),实现了变电站环境监控中的目标分类。实验表明,所提出的方法有效提高了分类精度。

关 键 词:混淆矩阵  支持向量机(SVM)  集成学习  AdaBoost

Research of the Classification Method Based on Confusion Matrixes and Ensemble Learning
KONG Ying-hui , JING Mei-li. Research of the Classification Method Based on Confusion Matrixes and Ensemble Learning[J]. Computer Engineering & Science, 2012, 34(6): 111-117
Authors:KONG Ying-hui    JING Mei-li
Affiliation:(Department of Electronics and Communication Engineering,North China Electric Power University,Baoding 071003,China)
Abstract:For the multi-classification problem,a classification method based on confusion matrix and ensemble learning is proposed in this paper.A hierarchical structure is generated from the similarities between patterns.The classification method chooses support vector machine(SVM) as the basic binary classifier.The AdaBoost algorithm applies weighted voting on SVM whose classification accuracy is not ideal.Taking object recognition in the substation environmental monitoring as an example(related to people,animals,ordinary flames(red and yellow flames),white flames,incandescent lamps),object classification is achieved.The experiments show that the proposed method can effectively improve the classification accuracy.
Keywords:confusion matrix  support vector machine(SVM)  ensemble learning  AdaBoost
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号