首页 | 本学科首页   官方微博 | 高级检索  
     


Design and numerical investigation of a circular microchannel for particle/cell separation using dielectrophoresis
Affiliation:Faculty of Mechanical Engineering, Microfluidics and MEMS lab, Babol Noshirvani University of Technology, Babol, Iran
Abstract:Precisely separating particles/cells with different sizes and physical properties has been an interest for point-of-care diagnostics and personalized treatment. Dielectrophoresis (DEP) is widely known as a powerful and non-invasive technique to separate particles and cells. This paper presents a comprehensive numerical investigation of particle/cell separation in circular microchannels using DEP. First, the geometrical parameters of the circular microchannel affecting DEP force are determined by performing an analytical solution. Then, by developing a solver in OpenFOAM, the effect of these parameters on particles deflection is investigated. According to the results, two different circular microchannels are presented to investigate the continuous separation of bio-particles (based on their physical properties) and polystyrene particles (based on their size). The results showed that a minimum voltage of 7, 9, and 12 V is required to achieve 100 % purity and separation efficiency for separating red blood cells from MDA-MB-231 cancer cells at the flow rate of 0.5, 1.0, and 1.5 µl/min, respectively. Also, the efficient separation of 5 and 10 µm polystyrene particles at the flow rate of 0.1 µl/min is possible only at the voltage of 9 V. The results of this numerical study can be useful for the fabrication of an optimal microdevice for the continuous DEP separation of particles and cells.
Keywords:Dielectrophoresis  Microfluidics  Particle separation  Lab on a chip  OpenFOAM
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号