首页 | 本学科首页   官方微博 | 高级检索  
     


Seawater desalination using renewable energy sources
Affiliation:1. Technische Universität Berlin, 10623 Berlin, Germany;2. Lappeenranta University of Technology, Skinnarilankatu 34, 53850 Lappeenranta, Finland;1. WDRC, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia;2. University of Southern Queensland (USQ), Toowoomba 4350, Queensland, Australia;3. Faculty of Sciences, University Hassiba Ben Bouali of Chlef, Algeria;4. Office of Research & Graduate Studies, Alfaisal University, Saudi Arabia
Abstract:The origin and continuation of mankind is based on water. Water is one of the most abundant resources on earth, covering three-fourths of the planet's surface. However, about 97% of the earth's water is salt water in the oceans, and a tiny 3% is fresh water. This small percentage of the earth's water—which supplies most of human and animal needs—exists in ground water, lakes and rivers. The only nearly inexhaustible sources of water are the oceans, which, however, are of high salinity. It would be feasible to address the water-shortage problem with seawater desalination; however, the separation of salts from seawater requires large amounts of energy which, when produced from fossil fuels, can cause harm to the environment. Therefore, there is a need to employ environmentally-friendly energy sources in order to desalinate seawater.After a historical introduction into desalination, this paper covers a large variety of systems used to convert seawater into fresh water suitable for human use. It also covers a variety of systems, which can be used to harness renewable energy sources; these include solar collectors, photovoltaics, solar ponds and geothermal energy. Both direct and indirect collection systems are included. The representative example of direct collection systems is the solar still. Indirect collection systems employ two sub-systems; one for the collection of renewable energy and one for desalination. For this purpose, standard renewable energy and desalination systems are most often employed. Only industrially-tested desalination systems are included in this paper and they comprise the phase change processes, which include the multistage flash, multiple effect boiling and vapour compression and membrane processes, which include reverse osmosis and electrodialysis. The paper also includes a review of various systems that use renewable energy sources for desalination. Finally, some general guidelines are given for selection of desalination and renewable energy systems and the parameters that need to be considered.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号