首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF神经网络的加筋粘土本构模型
引用本文:石修松,王路君,程展林. 基于RBF神经网络的加筋粘土本构模型[J]. 长江科学院院报, 2010, 27(7): 31-35. DOI: 10.3969/j.issn.1001-5485.2010.07.007
作者姓名:石修松  王路君  程展林
作者单位:长江科学院 水利部岩土力学与工程重点实验室,武汉 4300
基金项目:国家自然科学基金,二滩水电开发有限公司雅砻江水电开发联合研究基金资助项目 
摘    要:用室内三轴试验得到了加筋粘土的应力-应变关系,在此基础上建立了基于RBF神经网络的加筋粘土本构模型,利用此模型对加筋土在不同加筋层数情况下的本构模型进行仿真,并将其与试验值进行对比。结果表明,RBF神经网络能够很好地逼近加筋粘土的本构关系且具有较强的泛化能力,可以反映加筋层数和应力路径的影响。

关 键 词:三轴试验   本构模型   RBF神经网络   加筋粘土  

A Constitutive Model of Reinforced Clay Based on RBF Neural Network
SHI Xiu-song,WANG Lu-jun,CHENG Zhan-lin. A Constitutive Model of Reinforced Clay Based on RBF Neural Network[J]. Journal of Yangtze River Scientific Research Institute, 2010, 27(7): 31-35. DOI: 10.3969/j.issn.1001-5485.2010.07.007
Authors:SHI Xiu-song  WANG Lu-jun  CHENG Zhan-lin
Affiliation:Key Laboratory of Geotechnical Mechanics and Engineering of The Ministry of Water Resources,  Yangtze River Scientific Research Institute, Wuhan 430010 , China
Abstract:Indoor,triaxial tests were carried out to obtain the stress-strain relationship of reinforced clay.A RBF neural network constitutive model of reinforced clay was established based on test data.The authors used it to simulate the constitutive model of reinforced soil under different reinforced layers.Compared with the experimental value,the result shows that,the RBF neural network has a good approach to the constitutive relationship of reinforced clay and a strong generalization ability.It can reflect well t...
Keywords:triaxial test  constitutive model  RBF neural network  reinforced clay  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《长江科学院院报》浏览原始摘要信息
点击此处可从《长江科学院院报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号