首页 | 本学科首页   官方微博 | 高级检索  
     


Combined thermal and high pressure inactivation kinetics of tomato lipoxygenase
Authors:Dolores Rodrigo  Ruben Jolie  Ann Van Loey  Marc Hendrickx
Affiliation:(1) Department of Food and Microbial Technology, Faculty of Applied Bioscience and Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, B-3001 Heverlee, Belgium
Abstract:The combined isothermal (10–60 °C) and isobaric (0.1–650 MPa) inactivation kinetics of lipoxygenase (LOX) extracted from tomatoes and reconstituted in a tomato purée were studied. Thermal inactivation of LOX at atmospheric pressure proceeded in the temperature range of 45–65 °C. LOX inactivation did not follow first order kinetics; the data could be fitted assuming that the two isoforms of LOX with different thermostability were present. Combined thermal and high pressure inactivation occurs at pressures in the range of 100–650 MPa combined with temperatures from 10–60 °C, and followed first-order kinetics. In the high-temperature/low-pressure range, (T≥50 °C and P≤300 MPa) an antagonistic effect is observed, therefore, the Arrhenius and Eyring equation cannot be used over the entire temperature and pressure range. Small temperature dependence is found in the low-temperature/high pressure range. A third degree polynomial model was successfully applied to describe the temperature–pressure dependence of the inactivation rate constants, which can be useful to predict inactivation rate constants of tomato LOX reconstituted in tomato purée in the temperature–pressure range studied.
Keywords:Tomato  Lipoxygenase  High pressure  Inactivation  Kinetics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号