首页 | 本学科首页   官方微博 | 高级检索  
     


Multiple Endmember Hyperspectral Sparse Unmixing Based on Improved OMP Algorithm
Authors:Chunhui Zhao  Haifeng Zhu  Shiling Cui  Bin Qi
Affiliation:College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China,College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China,College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China and College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
Abstract:In conventional linear spectral mixture analysis model, a class is represented by a single endmember. However, the intra-class spectral variability is usually very large, which makes it difficult to represent a class, and in this case, it leads to incorrect unmixing results. Some proposed algorithms play a positive role in overcoming the endmember variability, but there are shortcomings on computation intensive, unsatisfactory unmixing results and so on. Recently, sparse regression has been applied to unmixing, assuming each mixed pixel can be expressed as a linear combination of only a few spectra in a spectral library. It is essentially the same as multiple endmember spectral unmixing. OMP (orthogonal matching pursuit), a sparse reconstruction algorithm, has advantages of simple structure and high efficiency. However, it does not take into account the constraints of abundance non-negativity and abundance sum-to-one (ANC and ASC), leading to undesirable unmixing results. In order to solve these issues, this paper presents an improved OMP algorithm (fully constraint OMP, FOMP) for multiple endmember hyperspectral sparse unmixing. The proposed algorithm overcomes the shortcomings of OMP, and on the other hand, it solves the problem of endmember variability. The ANC and ASC constraints are firstly added into the OMP algorithm, and then the endmember set is refined by the relative increase in root-mean-square-error (RMSE) to avoid over-fitting, finally pixels are unmixed by their optimal endmember set. The simulated and real hyperspectral data experiments show that FOPM unmixing results are ideally comparable and abundance RMSE reduces much lower than OMP and simple spectral mixture analysis (sSMA), and has a strong anti-noise performance. It proves that multiple endmember spectral mixture analysis is more reasonable.
Keywords:hyperspectral image  sparse representation  multiple endmember spectral unmixing  OMP  ANC and ASC
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《哈尔滨工业大学学报(英文版)》浏览原始摘要信息
点击此处可从《哈尔滨工业大学学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号