首页 | 本学科首页   官方微博 | 高级检索  
     


Computational homogenization of nonlinear elastic materials using neural networks
Authors:B A Le  J Yvonnet  Q‐C He
Affiliation:Université Paris‐Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 Bd Descartes77454Marne‐la‐Vallée Cedex 2, France
Abstract:In this work, a decoupled computational homogenization method for nonlinear elastic materials is proposed using neural networks. In this method, the effective potential is represented as a response surface parameterized by the macroscopic strains and some microstructural parameters. The discrete values of the effective potential are computed by finite element method through random sampling in the parameter space, and neural networks are used to approximate the surface response and to derive the macroscopic stress and tangent tensor components. We show through several numerical convergence analyses that smooth functions can be efficiently evaluated in parameter spaces with dimension up to 10, allowing to consider three‐dimensional representative volume elements and an explicit dependence of the effective behavior on microstructural parameters like volume fraction. We present several applications of this technique to the homogenization of nonlinear elastic composites, involving a two‐scale example of heterogeneous structure with graded nonlinear properties. Copyright © 2015 John Wiley & Sons, Ltd.
Keywords:neural networks  high‐dimensional approximation  computational homogenization  nonlinear homogenization  multiscale methods
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号