首页 | 本学科首页   官方微博 | 高级检索  
     

基于多尺度特征注意力机制的人脸表情识别
引用本文:张鹏,孔韦韦,滕金保. 基于多尺度特征注意力机制的人脸表情识别[J]. 计算机工程与应用, 2022, 58(1): 182-189. DOI: 10.3778/j.issn.1002-8331.2106-0174
作者姓名:张鹏  孔韦韦  滕金保
作者单位:1.西安邮电大学,西安 7101212.陕西省网络数据分析与智能处理重点实验室,西安 710121
基金项目:国家自然科学基金(61772396,61902296)。
摘    要:针对传统卷积神经网络在人脸表情识别过程中存在有效特征提取针对性不强、识别准确率不高的问题,提出一种基于多尺度特征注意力机制的人脸表情识别方法。用两层卷积层提取浅层特征信息;在Inception结构基础上并行加入空洞卷积,用来提取人脸表情的多尺度特征信息;引入通道注意力机制,提升模型对重要特征信息的表示能力;最后,将得到的特征输入Softmax层进行分类。通过在公开数据集FER2013和CK+上进行仿真实验,分别取得了68.8%和96.04%的识别准确率,结果表明该方法相比许多经典算法有更好的识别效果。

关 键 词:卷积神经网络  人脸表情识别  空洞卷积  通道注意力机制  

Facial Expression Recognition Based on Multi-scale Feature Attention Mechanism
ZHANG Peng,KONG Weiwei,TENG Jinbao. Facial Expression Recognition Based on Multi-scale Feature Attention Mechanism[J]. Computer Engineering and Applications, 2022, 58(1): 182-189. DOI: 10.3778/j.issn.1002-8331.2106-0174
Authors:ZHANG Peng  KONG Weiwei  TENG Jinbao
Affiliation:1.Xi’an University of Posts and Telecommunications, Xi’an 710121, China2.Shaanxi Provincial Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an 710121, China
Abstract:Aiming at the problems that the effective feature extraction is not strong and the recognition accuracy is not high in the process of facial expression recognition with traditional convolutional neural network, a facial expression recognition method based on multi-scale feature attention mechanism is proposed. Firstly, a two-layer convolutional layer is used to extract shallow feature information. Secondly, the dilated convolution is added to the Inception structure parallelly to extract multi-scale feature information, and then the channel attention mechanism is introduced to improve model’s ability of expressing important feature information. Finally, it inputs the obtained features into the Softmax layer for classification. The simulation experimenal results show that the proposed model achieves 68.8% and 96.04% recognition accuracy on the public datasets FER2013 and CK+, respectively, which have better recognition performance than many classic algorithms.
Keywords:convolutional neural network  facial expression recognition  dilated convolution  channel attention mechanism
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号