首页 | 本学科首页   官方微博 | 高级检索  
     


Stability enhancement of normal-geometry organic solar cells in a highly damp condition: A study on the effect of top electrodes
Affiliation:1. Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Republic of Korea;2. Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea;3. Department of Physics and Research Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Republic of Korea;1. Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan;2. Synchrotron Light Application Center, Saga University, Honjo 1, Saga 840-8502, Japan
Abstract:We present our efforts to enhance the stability of normal-geometry organic solar cells (n-OSCs), which are generally considered inferior to their inverted-geometry counterparts in terms of stability. Upon the identification of the vulnerability of top electrode/buffer layer interfaces under a humid environment, various top electrode combinations are assessed under an extremely damp condition (27 °C, 90%) for n-OSCs based on a bulk-heterojunction of poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C70-butyric acid methylester (PCBM70). Based on the experimental results, we propose an Al/Cu bilayer top electrode and demonstrate a 30-fold enhancement in the T80-lifetime values. Our study reveals that the enhanced lifetime with an Al/Cu bilayer electrode can be attributed to its water vapor transmission rate (WVTR), which is significantly lower than that of the Al electrodes typically used in conventional organic solar cells. The enhanced normal OSCs yielded stability comparable to that of the previously reported inverted OSCs.
Keywords:Organic solar cells  Stability  Lifetime  Normal geometry  Inverted geometry  Moisture
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号