首页 | 本学科首页   官方微博 | 高级检索  
     


Model predictive control of grid-connected PV power generation system considering optimal MPPT control of PV modules
Authors:Yingying Zhao  Aimin An  Yifan Xu  Qianqian Wang  Minmin Wang
Abstract:Because of system constraints caused by the external environment and grid faults, the conventional maximum power point tracking (MPPT) and inverter control methods of a PV power generation system cannot achieve optimal power output. They can also lead to misjudgments and poor dynamic performance. To address these issues, this paper proposes a new MPPT method of PV modules based on model predictive control (MPC) and a finite control set model predictive current control (FCS-MPCC) of an inverter. Using the identification model of PV arrays, the module-based MPC controller is designed, and maximum output power is achieved by coordinating the optimal combination of spectral wavelength and module temperature. An FCS-MPCC algorithm is then designed to predict the inverter current under different voltage vectors, the optimal voltage vector is selected according to the optimal value function, and the corresponding optimal switching state is applied to power semiconductor devices of the inverter. The MPPT performance of the MPC controller and the responses of the inverter under different constraints are verified, and the steady-state and dynamic control effects of the inverter using FCS-MPCC are compared with the traditional feedforward decoupling PI control in Matlab/Simulink. The results show that MPC has better tracking performance under constraints, and the system has faster and more accurate dynamic response and flexibility than conventional PI control.
Keywords:Grid-connected PV power generation system  Model predictive control  Maximum power point tracking  Inverter  Optimal value function  
点击此处可从《电力系统保护与控制》浏览原始摘要信息
点击此处可从《电力系统保护与控制》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号