首页 | 本学科首页   官方微博 | 高级检索  
     


Improved voltage tracking of autonomous microgrid technology using a combined resonant controller with lead-lag compensator adopting negative imaginary theorem
Authors:Md. Yah-Ya Ul Haque  Md. Rashidul Islam  Tanvir Ahme  Md. Rafiqul Islam Sheikh
Abstract:Growing application of distributed generation units at remote places has led to the evolution of microgrid (MG) technology. When an MG system functions independently, i.e., in autonomous mode, unpredictable loads and uncertainties emerge throughout the system. To obtain stable and flexible operation of an autonomous MG, a rigid control mechanism is needed. In this paper, a robust high-performance controller is introduced to improve the performance of voltage tracking of an MG system and to eliminate stability problems. A combination of a resonant controller and a lead-lag compensator in a positive position feedback path is designed, one which obeys the negative imaginary (NI) theorem, for both single-phase and three-phase autonomous MG systems. The controller has excellent tracking performance. This is investigated through considering various uncertainties with different load dynamics. The feasibility and effectiveness of the controller are also determined with a comparative analysis with some well-known controllers, such as linear quadratic regulator, model predictive and NI approached resonant controllers. This confirms the superiority of the designed controller.
Keywords:Negative imaginary theorem  Resonant controller  Lead-lag compensator  Autonomous microgrid  Voltage tracking  
点击此处可从《电力系统保护与控制》浏览原始摘要信息
点击此处可从《电力系统保护与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号