首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of gate overlap lightly doped drains on low temperature poly-Si thin film transistors
Authors:Jaehyun Cho  Sungwook Jung  Kyungsoo Jang  Hyungsik Park  Jongkyu Heo  Wonbaek Lee  DaeYoung Gong  Seungman Park  Hyungwook Choi  Hanwook Jung  Byoungdeog Choi  Junsin Yi
Affiliation:The School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
Abstract:Low temperature polycrystalline silicon (LTPS) thin-film transistors (TFTs) have a high carrier mobility that enables the design of small devices that offer large currents and fast switching speeds. However, the electrical characteristics of the conventional self-aligned polycrystalline silicon (poly-Si) TFTs are known to present several undesired effects, such as large leakage currents, the kink effect, and the hot-carrier effect. For this paper, LTPS TFTs were fabricated, and the SiNx/SiO2 gate dielectrics and the effect of the gate-overlap lightly doped drain (GOLDD) were analyzed in order to minimize these undesired effects. GOLDD lengths of 1, 1.5 and 2 μm were used, while the thickness of the gate dielectrics (SiNx/SiO2) was fixed at 65 nm (40 nm/25 nm). The electrical characteristics show that the kink effect is reduced in the LTPS TFTs using a more than 1.5 μm of GOLDD length. The TFTs with the GOLDD structure have more stable characteristics than the TFTs without the GOLDD structure under bias stress. The degradation from the hot-carrier effect was also decreased by increasing the GOLDD length. After applying the hot-carrier stress test, the threshold voltage variation (ΔVTH) was decreased from 0.2 V to 0.06 V by the increase of the GOLDD length. The results indicate that the TFTs with the GOLDD structure were protected from the degradation of the device due to the decreased drain field. From these results it can be seen that the TFTs with the GOLDD structure can be applied to achieve high stability and high performance in driving circuit applications for flat-panel displays.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号