首页 | 本学科首页   官方微博 | 高级检索  
     


Development of SnAg-based lead free solders in electronics packaging
Authors:Liang Zhang  Cheng-wen He  Yong-huan Guo  Ji-guang Han  Yong-wei Zhang  Xu-yan Wang
Affiliation:1. School of Mechanical and Electrical Engineering, Xuzhou Normal University, Xuzhou 221116, China;2. The 14th Research Institute, China Electronics Technology Group Corporation, Nanjing 210013, China
Abstract:Lead free solder alloys for electronic assembly is being driven by environmental and health concerns regarding toxicity of lead and, more importantly, by the perceived economic advantage of marketing “green” products. Of the currently available lead free solders, SnAg has the greatest potential. In this solder, the Ag3Sn compound is distributed in a eutectic network throughout the β-Sn matrix and these results represent mechanical strength. In order to further improve the microstructures and properties of SnAg-based alloys, alloying elements such as rare earth, Zn, In, P, Cu, Ni and particles such as ZrO2, POSS are selected to meet the requirement of high reliability of high-density electronics devices. For SnAg solder bearing rare earth (Ce and La), the creep-rupture life of solder joints can be remarkably increased up to four times more than that of the original SnAg solder joints at room temperature, meanwhile, rare earths can dramatically reduce the thickness of IMCs layer at solder/pad interfaces and also refine the microstructure of the alloy which results in the enhancement of mechanical properties of the SnAg solder. Moreover, the addition of ZrO2 nanoparticles significantly refined the size of Ag3Sn due to the adsorption effect of the ZrO2 nanoparticles. This paper summarizes the effects of alloying elements and particles on the wettability, mechanical properties, creep behavior, microstructures, etc. of SnAg-based lead free solder alloys.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号