首页 | 本学科首页   官方微博 | 高级检索  
     

基于EEMD和PSO-SVM的电机气隙偏心故障诊断
引用本文:任强,官晟,王凤军,丁军航,原明亭. 基于EEMD和PSO-SVM的电机气隙偏心故障诊断[J]. 组合机床与自动化加工技术, 2021, 0(2): 73-76,85
作者姓名:任强  官晟  王凤军  丁军航  原明亭
作者单位:青岛大学自动化学院;自然资源部第一海洋研究所;青岛海洋科学与技术试点国家实验室区域海洋动力学与数值模拟功能实验室;自然资源部海洋环境科学与数值模拟重点实验室;青岛大学山东省生态纺织协同创新中心
基金项目:科技部重大科学仪器设备专项“海洋物性参数监测仪”(2018YFF01014100)。
摘    要:针对电机气隙偏心故障如何通过振动信号进行有效诊断、如何选取合适故障特征等系列问题,提出了基于集合经验模态分解(EEMD)的Hilbert时频谱能量特征表达和粒子群参数优化的支持向量机(PSO-SVM)的故障诊断方法.首先对振动信号进行EEMD分解,并通过相关系数法选择有效的IMF分量;其次,对有效的IMF分量提取Hil...

关 键 词:振动信号  气隙偏心  希尔伯特变换  PSO-SVM  EEMD

Motor Air-Gap Eccentricity Fault Diagnosis Based on EEMD and PSO-SVM
REN Qiang,GUAN Sheng,WANG Feng-jun,DING Jun-hang,YUAN Ming-ting. Motor Air-Gap Eccentricity Fault Diagnosis Based on EEMD and PSO-SVM[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021, 0(2): 73-76,85
Authors:REN Qiang  GUAN Sheng  WANG Feng-jun  DING Jun-hang  YUAN Ming-ting
Affiliation:(College of Automation,Qingdao University,Qingdao Shandong 266071,China;First Institute of Oceanography,Ministry of Natural Resources of China,Qingdao 266061,China;Collaborative Innovation Center for Eco-Textiles of Shandong Province,Qingdao University,Qingdao Shandong 266071,China;不详)
Abstract:Aiming at the series of problems of how to effectively diagnosing air-gap eccentricity fault based on vibration signals,and how to select appropriate fault characteristics,a method based on Hilbert time-frequency spectrum energy of ensemble empirical mode decomposition(EEMD)and support vector machine is optimized by particle swarm optimization(PSO-SVM).The vibration signal was first decomposed into IMF by EEMD,and then the effective IMF was filtered by the correlation coefficient.The Hilbert time-frequency spectrum energy of effective IMF was extracted as feature vector,and feature vectors were then used to train PSO-SVM for fault diagnosis.The experimental results show that using this method can accurately diagnose the eccentric fault of the motor,and by comparing with other traditional fault characteristics under PSO-SVM,it is verified that the characteristics of Hilbert time-frequency spectrum energy can obtain higher diagnostic accuracy.
Keywords:vibration signal  motor air-gap eccentricity  Hilbert transform  PSO-SVM  EEMD
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号