首页 | 本学科首页   官方微博 | 高级检索  
     

基于内燃机振动信号的可视化识别诊断
摘    要:为提高故障识别诊断的精确度和实时性,有效解决内燃机多分量、非平稳振动信号特征提取困难的问题,提出一种基于改进局部二值模式(ILBP)与双向二维主成分分析(TD-2DPCA)的内燃机振动信号可视化故障识别诊断方法。针对传统时频方法在分析内燃机振动信号中,存在时频分辨率低及交叉干扰项的问题,将经验小波变换(EWT)与同步压缩小波变换(SST)应用到内燃机振动信号的时频图表征中;利用ILBP提取图像的纹理特征,并对ILBP图谱采用TD-2DPCA降维,将降维后的编码矩阵向量化后得到图像的特征参数;通过支持向量机(SVM)和最近邻分类器(NNC)分别特征向量进行训练、测试,实现内燃机的故障识别诊断。在内燃机气门间隙故障8种工况下缸盖振动信号的识别诊断试验中,均得到较高的分类精度;通过参数的合理优化,在保证了分类速率的同时,最高识别率达到96.67%,对比其他方法,充分表明该方法在内燃机故障诊断中的有效性。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号