首页 | 本学科首页   官方微博 | 高级检索  
     


One way finite visit automata
Authors:S.A. Greibach
Affiliation:Department of System Science, University of California, Los Angeles, CA 90024, U.S.A.
Abstract:A one-way preset Turing machine with base L is a nondeterministic on-line Turing machine with one working tape preset to a member of L. FINITEREVERSAL(L) (FINITEVISIT (L)) is the class of languages accepted by one-way preset Turing machines with bases in L which are limited to a finite number of reversals (visits). For any full semiAFL L, FINITEREVERSAL (L) is the closure of L under homomorphic replication or, equivalently, the closure of L under iteration of controls on linear context-free grammars while FINITEVISIT (L) is the result of applying controls from L to absolutely parallel grammars or, equivalently, the closure of L under deterministic two-way finite state transductions. If L is a full AFL with L ≠ FINITEVISIT(L), then FINITEREVERSAL(L) ≠ FINITEVISIT(L). In particular, for one-way checking automata, k + 1 reversals are more powerful than k reversals, k + 1 visits are more powerful than k visits, k visits and k + 1 reversals are incomparable and there are languages definable within 3 visits but no finite number of reversals. Finite visit one-way checking automaton languages can be accepted by nondeterministic multitape Turing machines in space log2n. Results on finite visit checking automata provide another proof that not all context-free languages can be accepted by one-way nonerasing stack automata.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号