首页 | 本学科首页   官方微博 | 高级检索  
     

融合块对角约束的鲁棒低秩多核聚类
引用本文:张小乾,王晶,薛旭倩,刘知贵.融合块对角约束的鲁棒低秩多核聚类[J].控制与决策,2022,37(11):2977-2983.
作者姓名:张小乾  王晶  薛旭倩  刘知贵
作者单位:西南科技大学 信息工程学院,四川 绵阳 621010;西南科技大学 计算机科学与技术学院,四川 绵阳 621010
基金项目:四川省科技计划项目(2020YJ0432);西南科技大学研究生创新基金项目(20ycx0032);国家自然科学基金青年项目(62102331);西南科技大学博士研究基金项目(22zx7110).
摘    要:针对现有的多核学习(multiple kernel learning, MKL)子空间聚类方法忽略噪声和特征空间中数据的低秩结构问题,提出一种新的鲁棒多核子空间聚类方法(low-rank robust multiple kernel clustering, LRMKC),该方法结合块对角表示(block diagonal representation, BDR)与低秩共识核(low-rank consensus kernel, LRCK)学习,可以更好地挖掘数据的潜在结构.为了学习最优共识核,设计一种基于混合相关熵度量(mixture correntropy induced metric,MCIM)的自动加权策略,其不仅为每个核设置最优权重,而且通过抑制噪声提高模型的鲁棒性;为了探索特征空间数据的低秩结构,提出一种非凸低秩共识核学习方法;考虑到亲和度矩阵的块对角性质,对系数矩阵应用块对角约束. LRMKC将MKL、LRCK与BDR巧妙融合,以迭代提高各种方法的效率,最终形成一个处理非线性结构数据的全局优化方法.与最先进的MKL子空间聚类方法相比,通过在图像和文本数据集上的大量实验验证了...

关 键 词:多核学习  混合相关熵度量  低秩共识核  块对角表示

Low-rank robust multiple kernel clustering with block diagonal constraints
ZHANG Xiao-qian,WANG Jing,XUE Xu-qian,LIU Zhi-gui.Low-rank robust multiple kernel clustering with block diagonal constraints[J].Control and Decision,2022,37(11):2977-2983.
Authors:ZHANG Xiao-qian  WANG Jing  XUE Xu-qian  LIU Zhi-gui
Affiliation:School of Information Engineering,Southwest University of Science and Technology,Mianyang 621010,China$ $;School of Computer Science and Technology,Southwest University of Science and Technology,Mianyang 621010,China
Abstract:Existing (multiple kernel learning, MKL) subspace clustering algorithms ignore the noise and the low-rank structure of the data in the feature space, therefore, we propose a new low-rank robust multiple kernel clustering algorithm (LRMKC) with block diagonal representation (BDR) and low-rank consensus kernel (LRCK), which is better for mining the underlying structure of the data. In particular, 1) to learn the optimal consensus kernel, we design an automatic weighting strategy using the mixture correntropy induced metric (MCIM), which not only sets the optimal weight for each kernel but also improves the robustness of the LRMKC by suppressing noise; 2) to explore the low-rank structure of input data in feature space, we learn the low-rank consensus kernel by the Schatten p-norm constraint on the optimal consensus kernel; 3) considering the block diagonal property of the affinity matrix, we apply block diagonal constraint to the coefficient matrix. The LRMKC combines MKL, LRCK, and BDR to solve these problems at the same time. Through the interaction of three technologies, the results of other technologies are used in the overall optimal solution to iteratively improve the efficiency of each technology, and finally form an overall optimal algorithm for processing nonlinear structural data. Compared with the most advanced MKL subspace clustering algorithms, extensive experiments on image and text datasets verify the competitiveness of the LRMKC.
Keywords:
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号