首页 | 本学科首页   官方微博 | 高级检索  
     

基于LS-SVR的混沌时间序列多参数自适应预测
引用本文:巨维博,郭明俊,郭阳明. 基于LS-SVR的混沌时间序列多参数自适应预测[J]. 西安工业大学学报, 2012, 0(6): 455-459
作者姓名:巨维博  郭明俊  郭阳明
作者单位:[1]西北工业大学力学与土木建筑学院,西安710072 [2]湖北中航精机科技股份有限公司,襄阳441003 [3]西北工业大学计算机学院,西安710072
基金项目:陕西省自然科学基础研究计划(2010JQ8005); 航天支撑技术基金、航空科学基金(2010ZD53039)
摘    要:故障预测对保障复杂设备的安全可靠工作具有重要意义,但往往难以建立起准确的解析形式的数学模型,因此常常依赖于通过观测所获得的混沌时间序列进行预测分析.为了提高预测的有效性和准确性,基于支持向量机预测理论,提出考虑全部相关多参数混沌时间序列中的信息,进行多参数相空间重构产生训练样本,并建立了多参数自适应最小二乘支持向量回归预测模型.以某设备三个相关参数的仿真混沌时间序列为例进行了预测实验,结果表明该方法有较好的预测精度,是一种有效的预测方法.

关 键 词:故障预测  最小二乘支持向量回归  自适应  多参数  混沌时间序列

Multi-parameter Adaptive Prediction for Chaotic Time Series Based on Least Squares Support Vector Regression
JU Wei-bo,GUO Ming-jun,GUO Yang-ming. Multi-parameter Adaptive Prediction for Chaotic Time Series Based on Least Squares Support Vector Regression[J]. Journal of Xi'an Institute of Technology, 2012, 0(6): 455-459
Authors:JU Wei-bo  GUO Ming-jun  GUO Yang-ming
Affiliation:1. School of Mechanics and Civil Architecture, Northwestern Polytechnical University, Xi' an 710072, China 2. Hubei Aviation Precision Machinery Technology Co. , LTD, Xiangyang 441003, China 3. School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China)
Abstract:Fault prediction is of great importance to ensure complex equipments' safety and reliability, but it is difficult to establish mathematical model of complex equipment. So complex equipments are usually predicted and analyzed by their observed chaotic time series. In order to improve the prediction availability and veracity, based on complex equipments inherent characteristics of chaotic and support vector machine prediction theory, it is suggested that all the information from relative parameters" time series be considered, the training samples be obtained through phase space reconstruction of chaotic time series of multi-parameter and the multi-parameter adaptive prediction model based on least squares support vector regression be established. Prediction experiments are made by taking simulation chaotic time series of three parameters of a certain complex equipment as an example. The results indicate that the method offers an effective prediction with its better precision.
Keywords:fault prediction  least squares support vector regression (LS-SVR)  adaptive  multi-parameter  chaotic time series
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号