首页 | 本学科首页   官方微博 | 高级检索  
     

L-fuzzy闭包空间的T_(-1),T_0与次T_0分离性
引用本文:伏文清. L-fuzzy闭包空间的T_(-1),T_0与次T_0分离性[J]. 西安工业大学学报, 2012, 0(1): 1-4
作者姓名:伏文清
作者单位:西安工业大学理学院,西安710032
基金项目:国家自然科学基金(11071151);陕西省教育厅专项科研计划项目(11JK0484);西安工业大学校长基金(ZAGDXJJ1029)
摘    要:为研究L-fuzzy闭包空间的分离性.定义了L-fuzzy闭包空间的T-1,T0与次T0分离性,给出了它们的等价刻画,用类比、推广的方法讨论了T-1,T0与次T0分离性的遗传性,可乘性等性质.证明了一个T-1(resp.,T0,次T0)L-fuzzy闭包空间的子空间仍是T-1(resp.,T0,次T0)L-fuzzy闭包空间,一族T-1(resp.,T0,次T0)L-fuzzy闭包空间的乘积空间仍是T-1(resp.,T0,次T0)L-fuzzy闭包空间的结果.结果表明文中定义的L-fuzzy闭包空间的T-1,T0与次T0分离性具有遗传性,可乘性.

关 键 词:L-fuzzy闭包空间  T-1分离性  T0分离性  次T0分离性,遗传性  可乘性

T-1, T0 and Sub-To Separation Axioms in L-fuzzy Closure Spaces
FU Wen-qing. T-1, T0 and Sub-To Separation Axioms in L-fuzzy Closure Spaces[J]. Journal of Xi'an Institute of Technology, 2012, 0(1): 1-4
Authors:FU Wen-qing
Affiliation:FU Wen-qing (School of Science,Xi'an Technological University,Xi'an 710032,China)
Abstract:Separation axioms of L-fuzzy closure spaces are studied in this paper. Firstly, the concept of T-1 ,To and sub-T0 separation axioms in L-fuzzy closure spaces are defined, and then some of their characteristics are given. Their hereditary property and productive property are disscussed by using analogy and generalization. It is proved that a sub space of T-1 (resp. , T0, sub-T0) L-fuzzy closure space is also a T-l(resp. ,To, sub-T0) L- fuzzy closure space and a class of T-1(resp., T0, sub-T0) L-fuzzy closure spaces is also a T-1 (resp. , T0, sub-T0) L-fuzzy closure space. The results indicate that the T-1, To and sub-T0 separation axioms defined in this paper is hereditary and productive.
Keywords:L-fuzzy closure space  T-1 separation axiom  To separation axiom  sub-To separation axiom hereditary property  productive property
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号