首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling and simulation of a parallel plate heat sink using computational fluid dynamics
Authors:R Arularasan  R Velraj
Affiliation:1.Department of Mechanical Engineering,SSN College of Engineering,Chennai,India;2.Institute for Energy Studies, CEG,Anna University,Chennai,India
Abstract:Desktop computers have changed to accommodate increasing power, approaching 100 W. Heat dissipation becomes a significant issue in efficiency promotion and stable operation of air-cooled microelectronics and power electronics components and assemblies. Finned heat sinks are commonly used devices for enhancing heat transfer from air-cooled microelectronics and power electronics components and assemblies. The use of finned heat sinks increases the effective surface area for convective heat transfer, reducing the thermal resistance and operating temperatures in air-cooled electronics. The task of selecting the best heat sink for a particular application from the hundreds of configurations available from the various manufacturers can be a formidable task for an engineer. In a typical heat sink design, the objective is to achieve target heat dissipation, while restricting the consumption of valuable resources such as mass, fan power, pressure drop, and space claim. In this research work, preliminary studies have been carried out for the performance improvement of a parallel-plate heat sink considering the various geometric parameters, such as number of fins, fin length, fin height, and base height. The modeling and simulation of the heat sink is carried out with the computational fluid dynamics package. The results are analyzed using analysis of variance and response graphs.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号