首页 | 本学科首页   官方微博 | 高级检索  
     


Ingested Ketone Ester Leads to a Rapid Rise of Acetyl-CoA and Competes with Glucose Metabolism in the Brain of Non-Fasted Mice
Authors:Laurent Suissa,Pavel Kotchetkov,Jean-Marie Guigonis,Emilie Doche,Oph  lie Osman,Thierry Pourcher,Sabine Lindenthal
Affiliation:1.Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l’Energie Atomique et aux Énergies Alternatives (CEA), University Côte d’Azur, F-06107 Nice, France; (L.S.); (P.K.); (J.-M.G.); (T.P.);2.Stroke Unit, University Hospital, F-13005 Marseille, France; (E.D.); (O.O.)
Abstract:The role of ketone bodies in the cerebral energy homeostasis of neurological diseases has begun to attract recent attention particularly in acute neurological diseases. In ketogenic therapies, ketosis is achieved by either a ketogenic diet or by the administration of exogenous ketone bodies. The oral ingestion of the ketone ester (KE), (R)-3-hydroxybutyl (R)-3-hydroxybutyrate, is a new method to generate rapid and significant ketosis (i.e., above 6 mmol/L) in humans. KE is hydrolyzed into β-hydroxybutyrate (βHB) and its precursor 1,3-butanediol. Here, we investigate the effect of oral KE administration (3 mg KE/g of body weight) on brain metabolism of non-fasted mice using liquid chromatography in tandem with mass spectrometry. Ketosis (Cmax = 6.83 ± 0.19 mmol/L) was obtained at Tmax = 30 min after oral KE-gavage. We found that βHB uptake into the brain strongly correlated with the plasma βHB concentration and was preferentially distributed in the neocortex. We showed for the first time that oral KE led to an increase of acetyl-CoA and citric cycle intermediates in the brain of non-fasted mice. Furthermore, we found that the increased level of acetyl-CoA inhibited glycolysis by a feedback mechanism and thus competed with glucose under physiological conditions. The brain pharmacodynamics of this oral KE strongly suggest that this agent should be considered for acute neurological diseases.
Keywords:ketosis, ketogenic diet, exogenous ketone bodies, ketone ester, β  -hydroxybutyrate, cerebral energy metabolism
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号