首页 | 本学科首页   官方微博 | 高级检索  
     


Minimizing detection-to-boosting latency toward low-power error-resilient circuits
Affiliation:1. Department of Electrical Engineering and AIM-HI, National Chung Cheng University, Taiwan;2. Department of Information Systems Engineering, Osaka University, Japan;1. , AutoPredictiveCoding LLC, United States;2. Louisiana State University, United States;1. Department of Computer Systems Engineering, University of Engineering and Technology, Peshawar, Pakistan;2. Department of Electrical & Electronics Engineering, Universiti Teknologi PETRONAS, Tronoh, Perak, Malaysia;1. CAD Laboratory, Indian Institute of Science, Bangalore 560012, Karnataka, India;2. Morphing Machines Pvt. Ltd., Bangalore 560055, Karnataka, India
Abstract:Dynamic voltage scaling (DVS) has become one of the most effective approaches to achieve ultra-low-power SoC. To eliminate timing errors arising from DVS, several error-resilient circuit design techniques were proposed to detect and/or correct timing violations. The most recently proposed time-borrowing-and-local-boosting (TBLB) technique has the advantage of lower power consumption and less performance degradation due to the needlessness of pipeline stalls. On the other hand, to make the best use of the TBLB technique, the latency from error detection to voltage boosting for TBLB latches must be carefully considered, especially during physical design. To address this issue, this paper first introduces the behavior of TBLB circuits, and then presents two major design styles of TBLB latches, including TBLB macros and multi-bit TBLB latches, for reducing detection-to-boosting latency. The corresponding physical synthesis methodologies for both design styles are further proposed. Experimental results based on the IWLS benchmarks show that the proposed physical synthesis approach for resilient circuits with multi-bit TBLB latches is very effective in reducing the delay of both combinational and error-detection circuits, which indicates better circuit reliability. To our best knowledge, this is the first work in the literature which introduces the physical synthesis methodologies for TBLB resilient circuits.
Keywords:Latch clustering  Flip-flop clustering  Time borrowing  Local boosting  Dynamic voltage scaling  Reliability  Resilient circuits
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号