首页 | 本学科首页   官方微博 | 高级检索  
     

微分方程初值问题的GDQR解法
引用本文:李志毅,陈殿云,雷旭升. 微分方程初值问题的GDQR解法[J]. 数值计算与计算机应用, 2005, 26(2): 135-140
作者姓名:李志毅  陈殿云  雷旭升
作者单位:河南科技大学
基金项目:河南省科技攻关项目0424220224,0424220224.
摘    要:本文用最近由Wu提出的一种数值方法-GDQR(GeneralizedDifferentialQuadra-tureRule)对工程和科学技术中常遇到的2—4阶微分方程初值问题进行了求解.部分结果与精确解或龙格-库塔方法所得结果作了对比,表明GDQR在解决常微分方程初值问题时简单方便有效.

关 键 词:GDQR  微分方程  初值问题  欧拉方程  龙格-库塔方法
修稿时间:2002-08-09

INITIAL-VALUE EQUATIONS ANALYSIS BY THE GENERALIZED DIFFERENTIAL QUADRATURE RULE
LI Zhiyi,Chen Dianyun,Lei Xusheng. INITIAL-VALUE EQUATIONS ANALYSIS BY THE GENERALIZED DIFFERENTIAL QUADRATURE RULE[J]. Journal on Numerical Methods and Computer Applications, 2005, 26(2): 135-140
Authors:LI Zhiyi  Chen Dianyun  Lei Xusheng
Abstract:This paper introduces a new numerical method-Generalized Differential Quadrature Rule proposed by Wu in 2001. Using this method the authors solve several initial-value problems of differential equations of 2nd to 4nd order. Differential quadrature expressions are derived based on the GDQR for these equations. The numerical results were compared with the exact solutions and what obtained by using Runge-Kutta method. The numerical results indicate that GDQR has high efficiency and accuracy for initial-value problems of differential equations.
Keywords:GDQR   differential equations   initial-value   Euler method   Runge-Kutta method  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号