首页 | 本学科首页   官方微博 | 高级检索  
     


Source Coding for Quasiarithmetic Penalties
Authors:Baer  MB
Affiliation:Dept. of Electr. Eng., Stanford Univ., CA;
Abstract:Whereas Huffman coding finds a prefix code minimizing mean codeword length for a given finite-item probability distribution, quasiarithmetic or quasilinear coding problems have the goal of minimizing a generalized mean of the form rho-1(Sigmaipirho(li )), where li denotes the length of the ith codeword, p i denotes the corresponding probability, and rho is a monotonically increasing cost function. Such problems, proposed by Campbell, have a number of diverse applications. Several cost functions are shown here to yield quasiarithmetic problems with simple redundancy bounds in terms of a generalized entropy. A related property, also shown here, involves the existence of optimal codes: For "well-behaved" cost functions, optimal codes always exist for (possibly infinite-alphabet) sources having finite generalized entropy. An algorithm is introduced for finding binary codes optimal for convex cost functions. This algorithm, which can be extended to other minimization utilities, can be performed using quadratic time and linear space. This reduces the computational complexity of a problem involving minimum delay in a queue, allows combinations of previously considered problems to be optimized, and greatly expands the set of problems solvable in quadratic time and linear space
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号