首页 | 本学科首页   官方微博 | 高级检索  
     

组合模型在降雨量预测中的应用
引用本文:崔德友. 组合模型在降雨量预测中的应用[J]. 计算机仿真, 2012, 0(8): 163-166
作者姓名:崔德友
作者单位:通化广播电视大学
摘    要:研究降雨量准确预测问题,降水量的变化既受大气环流、地形、气压、气候带等各种环境因子的影响,降水量的动态特征呈现复杂非线性和各种干扰因素,预测不可能准确。传统预测模型难以对其进行准确预测,预测精度低。为提高降雨量的预测精度,提出一种组合模型的降雨量预测模型。首先采用小波分析将降雨量数据进行分解成线性和非线性部分,然后分别采用ARIMA和RBF神经网络模型对其进行预测,最后采用小波重构线性和非线性预测结果,得到降雨量最终预测结果。仿真结果表明,相对于传统预测模型,组合模型提高了降雨量预测精度,预测结果可以帮助农业、水利部门提高防治旱涝灾害的科学依据。

关 键 词:降雨量  小波分析  神经网络  预测

Application of Combination Model in Rainfall Prediction
CUI De-you. Application of Combination Model in Rainfall Prediction[J]. Computer Simulation, 2012, 0(8): 163-166
Authors:CUI De-you
Affiliation:CUI De-you(Tonghua Radio & TV University,Tonghua Jilin134000,China)
Abstract:Study the prediction accuracy of rainfall.In order to improve the prediction accuracy of rainfall,this paper presented a combination rainfall prediction model.Firstly,the rainfall data were decomposed into linear and nonlinear parts by using the wavelet analysis,and then the ARIMA and RBF neural network models were used to predict the two parts.Finally,the linear and nonlinear prediction results were reconstructed by wavelet analysis to get the final forecasting result of rainfall.The simulation results show that the combination model improves the prediction accuracy of rainfall compared with the traditional prediction model,and the prediction results can improve the prevention of flood and drought disaster in agriculture and water conservancy.
Keywords:Rainfall forecasting  Wavelet analysis  Neural network  Prediction
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号