首页 | 本学科首页   官方微博 | 高级检索  
     

基于视觉同时定位与地图构建数据关联优化算法
引用本文:赵 亮,陈 敏,李洪臣. 基于视觉同时定位与地图构建数据关联优化算法[J]. 计算机应用, 2014, 34(2): 576-579
作者姓名:赵 亮  陈 敏  李洪臣
作者单位:电子科技大学 航空航天学院,成都 611731
摘    要:数据关联的复杂程度随着地图规模的不断扩大而增加是导致机器人同时定位与地图创建(SLAM)实时性差的一个主要原因。在SLAM系统中,主要应用尺度不变特征变换(SIFT)算法提取自然路标。提出两种方法来改进数据关联的实时性:1)提取感兴趣区域;2)引入当前路标的物理位置信息作预判断。实验结果表明,所提的改进方法是可靠的,改善算法复杂度的效果是显而易见的。

关 键 词:同时定位与地图构建   数据关联  边缘提取  区域裁剪   特征提取  
收稿时间:2013-07-31
修稿时间:2013-11-14

Optimized data association algorithm based on visual simultaneous localization and mapping
ZHAO Liang CHEN Min LI Hongchen. Optimized data association algorithm based on visual simultaneous localization and mapping[J]. Journal of Computer Applications, 2014, 34(2): 576-579
Authors:ZHAO Liang CHEN Min LI Hongchen
Affiliation:School of Aeronautics and Astronautics, University of Electronic Science and Technology of China,Chengdu Sichuan 611731,China
Abstract:The scale of data association increases as the map grows, which is one of the major reasons for the poor real-time performance of robot in the process of Simultaneous Localization And Mapping (SLAM). In visual SLAM system, SIFT (Scale Invariant Feature Transform) algorithm was used to extract the natural landmarks. Two improvements were introduced to improve the real-time of data association:firstly,extracted the "interest region"; secondly,took into account the physical location of current landmarks. The experimental results indicate that this kind of improvement method is reliable, and the capability of reducing computational complexity is obvious.
Keywords:SLAM   data association    edge extraction   regional cutting   feature extraction
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号