首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM模型的风电功率预测
引用本文:殷实,关玉衡,曾艳芳. 基于SVM模型的风电功率预测[J]. 常州信息职业技术学院学报, 2012, 11(3): 31-33
作者姓名:殷实  关玉衡  曾艳芳
作者单位:华南理工大学电力学院,广东广州,510640
摘    要:为解决因风电机组功率波动产生的调度问题,运用支持向量机法对风电机组功率的输出进行实时预测,结果表明单台机组预测的均方根误差为2.16%,相关系数为77.605 4%,58台机组预测的均方误差为0.7%,相关系数为90.321 4%。说明了风机机组汇聚得越多,机组系统越稳定。最后还探索了进一步提高SVM预测精度的方法。

关 键 词:风电功率  实时预测  支持向量机

The Forecasting of Wind Power Based on SVM
YIN Shi,GUAN Yu-heng,ZENG Yan-fang. The Forecasting of Wind Power Based on SVM[J]. Journal of Changzhou Vocational College of Information Technology, 2012, 11(3): 31-33
Authors:YIN Shi  GUAN Yu-heng  ZENG Yan-fang
Affiliation:(Electric Power College,South China University of Technology,Guangzhou 510640,China)
Abstract:To solve the problem of electricity scheduling which is caused by power fluctuation of wind turbines,this article focuses on the real-time forecast on power output of wind turbines with the use of support vector machine.The result shows that the MSE of single turbine forecast is 0.02,the related coefficient is 77.605 4%,the MSE of fifty-eight turbines forecast is 0.007,the related coefficient is 90.321 4%.It shows the wind turbine convergence is beneficial to the stable of turbine system.It also makes an exploration on further improvement of forecasting accuracy.
Keywords:wind power forecast  real-time forecast  support vector machine
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号