首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于加权隐马尔可夫的 自回归状态预测模型
引用本文:刘震,王厚军,龙兵,张治国. 一种基于加权隐马尔可夫的 自回归状态预测模型[J]. 电子学报, 2009, 37(10): 2113-2118
作者姓名:刘震  王厚军  龙兵  张治国
作者单位:电子科技大学自动化工程学院,四川成都 611731
摘    要:针对电子系统状态趋势预测问题,提出了一种加权隐马尔可夫模型的自回归趋势预测方法.该方法以自回归模型作为隐马尔可夫的状态输出,利用加权预测思想对马尔可夫链中的隐状态进行混合高斯模型的加权序列预测,并利用最大概率隐状态下的自回归系数计算模型输出.通过对实际的复杂混沌序列和电子系统BIT状态数据进行趋势预测,并针对不同模型参数下的预测结果进行实验分析,结果表明该方法对系统状态变化的趋势具有较好的预测性能.

关 键 词:趋势预测  隐马尔可夫  自回归  加权预测  
收稿时间:2007-12-24

Research on Condition Trend Prediction Based on Weighed Hidden Markov and Autoregressive Model
LIU Zhen,WANG Hou-jun,LONG Bing,ZHANG Zhi-guo. Research on Condition Trend Prediction Based on Weighed Hidden Markov and Autoregressive Model[J]. Acta Electronica Sinica, 2009, 37(10): 2113-2118
Authors:LIU Zhen  WANG Hou-jun  LONG Bing  ZHANG Zhi-guo
Affiliation:School of Automation Engineering,University of Electronic Science and Technology of China,Chengdu,Sichuan 611731,China
Abstract:A novel trend prediction approach based on weighed hidden Markov model (HMM) and autoregressive model (AR) is presented in order to solve this problem of bend prediction for complex electronic system. This approach regards the autoregressive model as the output of HMM, uses weighted prediction method and mixed Gaussianin model to predict the hidden state of Markov chain,and calculates the output of model by using the regression coefficient of the maximum probability hidden state. This approach is applied to the trend prediction of complex chaotic time series and typical electronic equipment's BIT data, and the effects of various model parameters on trend prediction precision are discussed.The experiments based on condition trend prediction for electronic equipments demonstrate the effectiveness of the method.
Keywords:trend prediction  hidden Markov model  autoregressive model  weighed prediction
本文献已被 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号