首页 | 本学科首页   官方微博 | 高级检索  
     

基于广义神经网络与模糊聚类的变压器故障诊断
作者单位:;1.福州大学电气工程与自动化学院
摘    要:鉴于IEC三比值法在变压器故障诊断中,存在编码缺失和编码边界过于绝对等缺陷,提出了基于广义回归神经网络(GRNN)和模糊C-均值聚类算法(FCM)的变压器故障诊断方法,建立了GRNN-FCM联合变压器故障诊断模型。选取变压器油中5种特征气体体积分数及其三比值编码作为输入特征向量,利用GRNN模型对样本故障进行初步判断(正常、过热、放电、放电兼过热),再采用模糊C-均值聚类算法对样本故障作进一步判断,最终得到具体的故障类型。将该模型与其他几种故障诊断方法进行对比分析,仿真实验结果表明,GRNN-FCM联合变压器故障诊断模型输出值与实际值具有较好一致性且准确度更高,验证了该模型的可行性及实用性。

关 键 词:电力变压器  IEC三比值法  广义回归神经网络  模糊C-均值聚类算法  故障诊断

Transformer Fault Diagnosis Based on GRNN and FCM
Abstract:
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号