首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of high-pressure/high-temperature processing on chemical pectin conversions in relation to fruit and vegetable texture
Authors:Ans De Roeck  Thomas DuvetterIlse Fraeye  Iesel Van der PlanckenDaniel Ndaka Sila  Ann Van LoeyMarc Hendrickx
Affiliation:Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
Abstract:Heat sterilization of plant derived food products entails considerable organoleptic and nutritional quality losses. For instance, texture loss of fruits and vegetables occurs, next to turgor pressure losses, mainly due to chemical changes in the cell-wall pectic polysaccharides. High-pressure sterilization, i.e. the combination of high temperature (?90 °C) with high pressure (?500 MPa), could present a positive alternative assuring safety while minimizing quality losses. In this study, the potential of high-pressure sterilization in preserving fruit and vegetable texture was evaluated by investigating the effect of combined high-pressure/high-temperature (HP/HT) treatments on two texture related chemical pectin conversions in model sytems. First, a protocol was developed to perform reproducible kinetic studies at HP/HT under constant processing conditions. Subsequently, apple pectin solutions at pH 6.5 were subjected to different HP/HT combinations (500, 600 and 700 MPa/90, 110 and 115 °C) and the extent of chemical demethoxylation and β-eliminative depolymerization was determined. At atmospheric pressure, both zero-order reaction rate constants increased with increasing temperature. At all temperatures, demethoxylation showed a higher rate constant than β-elimination. However, a temperature rise resulted in a stronger acceleration of β-elimination than of demethoxylation. When combining high temperature with high pressure, β-elimination was retarded or even stopped, whereas demethoxylation was stimulated. These results are very promising in the context of the texture preservation of high-pressure sterilized fruits and vegetables, as β-elimination is accepted to be one of the main causes of thermal softening and low methoxylated pectin can enhance tissue strength by forming cross-links with calcium ions present.
Keywords:Pectin  Texture  Demethoxylation  β-elimination  High-pressure sterilization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号