首页 | 本学科首页   官方微博 | 高级检索  
     

特征融合和聚类核函数平滑采样优化的粒子滤波目标跟踪方法
引用本文:李科,徐克虎. 特征融合和聚类核函数平滑采样优化的粒子滤波目标跟踪方法[J]. 计算机科学, 2012, 39(4): 210-213
作者姓名:李科  徐克虎
作者单位:装甲兵工程学院控制工程系 北京100072
基金项目:总装备部重点科研项目,国防预研基金项目
摘    要:针对复杂场景下的目标跟踪问题,提出了一种改进的粒子滤波目标跟踪方法。利用背景加权后的联合直方图描述目标灰度和梯度特征信息,在粒子滤波算法的框架下,设计了一种自适应特征融合观测模型来适应场景的不断变化;同时针对传统粒子滤波算法存在的粒子退化问题,提出了一种基于聚类核函数平滑采样的方法。理论仿真和实际场景的实验结果表明,该算法适应性更强,精度更高,能有效跟踪复杂场景下的运动目标。

关 键 词:目标跟踪  特征融合  粒子滤波  重采样

Optimal Particle Filter Object Tracking Algorithm Based on Features Fusion and Clustering Kernel Function Smooth Sampling
LI Ke , XU Ke-hu. Optimal Particle Filter Object Tracking Algorithm Based on Features Fusion and Clustering Kernel Function Smooth Sampling[J]. Computer Science, 2012, 39(4): 210-213
Authors:LI Ke    XU Ke-hu
Affiliation:(Department of Control Engineering,Academy of the Armored Force Engineering,Beijing 100072,China)
Abstract:An improved particle filter object tracking algorithm was proposed to solve object tracking problems in com-plex scene. hhis paper used united histogram to describe target grayscale and gradient direction features imformation,and designed a self-adaptive features fusion observation model to adapt the changing scene. To solve particles degeneracyproblem of basic particle filter, a resampling method based on clustering kernel function smooth was proposed. hhe ex-perimental results based on simulation and the actual scenes show that this algorithm is more adaptable and possesseshigher accuracy, can track the moving object in complex scene effectively.
Keywords:Object tracking   Features fusion   Particle filter   Resampfing
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号